

THE GLOBUS PROJECT

White Paper

GridFTP
Universal Data Transfer for the Grid

W H I T E P A P E R

GridFTP
Universal Data Transfer for the Grid

September 5, 2000

Copyright 2000, The University of Chicago and The University of Southern California

G R I D F T P : U N I V E R S A L D A T A T R A N S F E R F O R T H E G R I D

 2222

Introduction
“Access to distributed data is typically as important as access to distributed
computational resources.”

he Globus Project aims to develop new technologies that enable the creation of stable
computational grids. Computational grids provide the computational infrastructure for
powerful new tools for scientific investigation, including desktop supercomputing, smart
instruments, collaborative environments, and distributed supercomputing.1 Our strategy

is to focus on services at the middleware level, where we generalize the requirements of grid
applications and deliver technologies that support entire classes of applications. The middleware
layer offers services for managing large numbers of diverse computational resources administered
by independent organizations, and provides application developers with a simplified view of the
resulting computational environment.

Our group has done considerable work in collaboration with scientific communities, developing
applications that take advantage of the middleware capabilities offered by the Globus Toolkit. We
have learned through this collaboration that access to distributed data is typically as important as access
to distributed computational resources. Distributed scientific and engineering applications typically
require access to large amounts of data (terabytes or petabytes). Future applications envisioned by
our team also require widely distributed access to data. (For example, access in many places by
many people, virtual collaborative environments, etc.)

In many cases, application requirements call for the ability to read large datasets and to create new
datasets. They often do not require the ability to change existing datasets. Consequently, the
distributed scientific computing community has envisioned a tiered model for data storage.
From the perspective of a specific organization or location, this model would include:

! large locally-stored datasets,

! locally-stored replicas of datasets from remote locations, and

! access to remote datasets that are not replicated locally.

1 I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. International Journal of Supercomputer
Applications, 11(2):115-128, 1997.

T

G R I D F T P : U N I V E R S A L D A T A T R A N S F E R F O R T H E G R I D

 3333

The terms “local” and “remote” are imprecise. Locality is really a matter of degrees. For
example, in some application scenarios, there isn’t enough room on “local” disk (/tmp, etc), so it
is necessary to access “remote” data residing on a storage system that is in close physical
proximity to the computer. In other cases, the issue is not so much available space as it is data
management policies; applications need to access data that is “remote” (stored at other
organizations) because the management policy does not permit the data to be copied to a more
“local” location.

In order to support this model, grid middleware should provide both a means of managing the
datasets described in this model, and a number of basic mechanisms that generalize the
requirements of most data-intensive applications. It is our intent, therefore, to offer a generic
infrastructure in the form of core data transfer services and generic data management libraries.
These fundamental building blocks can then be used in a variety of interesting ways to build
systems and applications.

 The Globus Project is currently engaged in defining and developing the following core
capabilities, which we believe will be necessary in order to build a persistent Data Grid
environment.

! A high-performance, secure, robust data transfer mechanism

! A set of tools for creating and manipulating replicas of large datasets

! A mechanism for maintaining a catalog of dataset replicas.

Relationship to existing distributed data storage systems
There are already a number of distributed storage resource managers in use by the scientific and
engineering community. These storage systems have been created in response to specific needs
for storing and accessing large datasets. They each focus on a distinct set of requirements and
provide distinct services to their clients.

For example, some storage systems (DPSS, HPSS) focus on high-performance access to data and
utilize parallel data transfer streams and/or striping across multiple servers to improve
performance.2 3 Other systems (DFS) focus on supporting high-volume usage and utilize dataset
replication and local caching to divide and balance server load.4 The SRB system connects
heterogenous data collections and provides a uniform client interface to these repositories, and

2 B. Tierney, W. Johnston, J. Lee, G. Hoo, and M. Thompson. End-to-end performance analysis of high speed distributed
storage systems in wide area ATM networks. In NASA/Goddard Conference on Mass Storage Systems and Technologies, 1996,
LBNL-39064.

3 R.W. Watson and R.A. Coyne. The parallel I/O architecture of the high-performance storage system (HPSS). In IEEE
MSS Symposium, 1995.

4 It is interesting to note that DFS also provides for cache coherence in the face of multiple writers. This is one of its
drawbacks for data grid applications, since this feature forces unnecessary overhead. As mentioned previously, data grid
applications seldom need the ability to change existing datasets.

G R I D F T P : U N I V E R S A L D A T A T R A N S F E R F O R T H E G R I D

 4444

also provides metadata for use in identifying and locating data within the storage system.5 Still
other services (HDF5) focus on the structure of the data, and provide services for accessing
structured data from a variety of underlying storage systems.6

Unfortunately, most of these customized storage systems utilize incompatible protocols for
accessing data and require the use of their own clients. The use of multiple incompatible
protocols for data storage effectively partitions the datasets available on the grid. Applications
that require access to data stored in different storage systems must use different methods to
retrieve data from each system. It can be challenging to transfer a dataset from one system to
another.

We believe that it would be mutually advantageous to have a common level of interoperability
between all of these disparate systems: a common—but extensible—underlying data transfer
protocol. A common data transfer protocol for all of these customized storage systems would
confer benefits to both the keepers of large datasets and the users of these datasets. Dataset
providers would gain a broader user base, because their data would be available to any client.
Dataset users would gain access to a broader range of storage systems and data.

Furthermore, establishing a common data transfer protocol would eliminate the current
duplication of effort in developing unique data transfer capabilities for different storage systems.
A pooling of effort in the data transfer protocol area would lead to greater reliability, performance,
and overall features that would then be available to all distributed storage systems.

Related efforts
In addition to the work being done on the storage systems mentioned above, we also expect that
the results of this work will be of use in the following specific communities.

! The high-energy physics community (e.g., CERN, Fermi, Argonne)

! The climate modeling community

! The earthquake simulation and modeling community

! The NASA data mining project

5 Information on SRB is available on the World Wide Web at http://www.npaci.edu/DICE/SRB/.

6 Information about HDF/HDF5 is available on the World Wide Web at http://hdf.ncsa.uiuc.edu/.

G R I D F T P : U N I V E R S A L D A T A T R A N S F E R F O R T H E G R I D

 5555

Motivation for a common transfer mechanism
“The use of multiple incompatible protocols for data storage effectively
partitions the datasets available on the grid.”

s described in the introduction to this paper, the use of multiple storage systems has led
to a partitioning of the available datasets and storage services. Breaking through the
partitions created by these incompatible storage systems can be achieved by creating a
layer of interoperability either above or below the storage systems.

Adding a layer of interoperability above the storage system is the most obvious approach. This
would involve the creation of a “metastorage system”, or an abstraction of existing storage
systems that uses a number of different logical storage systems to implement high-level storage
features. Advantages of this approach include a common interface for applications that require
data storage functionality and the ability to accomplish the objective without any changes to
existing storage systems. Disadvantages include the need to develop interfaces to existing storage
systems (and new interfaces when new storage systems are invented) and the unfortunate effect
that specialized features of particular storage systems would be hidden behind the abstracted
service layer.

Adding a layer of interoperability beneath the storage system would involve decoupling the low-
level data transfer mechanisms from the distributed storage services that use them. Once this is
done, a common data transfer mechanism (using a single, universal data transfer protocol) can be
used for all of the storage systems. Advantages of this approach include the ability to develop
new specialized storage systems that are automatically compatible with existing systems, and the
fact that existing data storage systems could take advantage of a richer set of data transfer
functionality. The major disadvantage is that the developers of existing storage systems must
retrofit their systems to use the common data transfer mechanism.

Most of the existing distributed storage services already decouple their high-level services from the
underlying data transfer mechanism. We have already collaborated with UCSD in implementing
GSSAPI security in the SRB system’s data transfer services. The HPSS system uses a parallel FTP
service as its data transfer mechanism. NCSA’s HDF5 implementation utilizes a “virtual file
driver” mechanism that provides structured file access via arbitrary storage systems and data
transfer mechanisms. (HDF5 has also been demonstrated to work with the GASS transfer
mechanism.)

This pre-existing decoupling offers us the opportunity to experiment with a common data
transfer protocol for any or all of the above data storage services. The existence of a common
wire protocol for data transfer means that there is a fundamental level of interoperability between
systems that use the common protocol. Whether storage system developers write their own code
for implementing the common wire protocol or use code provided by the Globus Toolkit, the use
of a common protocol will ensure that their storage systems have a high-performance data
transfer capability that automatically interoperates with other storage systems.

A

G R I D F T P : U N I V E R S A L D A T A T R A N S F E R F O R T H E G R I D

 6666

Characteristics of the data transfer mechanism
n order to make this proposition attractive to the users and developers of existing storage
systems, we must provide a transfer mechanism that offers a superset of the features offered
by any of the mechanisms currently in use. A common data transfer protocol for the Grid
would ideally offer all of the features currently available from any of the protocols currently

in use. At a minimum, it must offer all of the features that are required for the types of scientific
and engineering applications that we intend to support on the Grid.

We have observed that the FTP protocol is the protocol most commonly used for data transfer
on the Internet, and the most likely candidate for meeting the grid’s needs. It is attractive in
particular for the following reasons.

! It is a widely implemented and well-understood IETF standard protocol.

! It provides a well-defined architecture for protocol extensions, and supports dynamic
discovery of the extensions supported by a particular implementation.

! Numerous groups have added various extensions through the IETF. Some of these
extensions would be particularly useful in the grid.

! It supports transfers between client and server.

! It supports third party transfers between two servers.

We have already implemented an FTP client and server with support for GSSAPI security7
following protocol extensions defined by the Internet community.8 The GSSAPI supports either
PKI or Kerberos authentication.

Most current FTP implementations support only a subset of the features defined in the FTP
protocol (RFC 969) and its accepted extensions. Some of the seldom-implemented features
would be useful to data grid applications. The standards also lack several features which data grid
applications require.

We intend to select a subset of the existing FTP standard and further extend it, adding the
following features. We believe that the resulting protocol will be a suitable candidate for the
common data transfer protocol for the grid, which we call “GridFTP”.

Automatic negotiation of TCP buffer/window sizes
Manually setting TCP buffer/window sizes is an error-prone process (particularly for non-
experts) and is often simply not done. GridFTP will support automatic negotiation of TCP
buffer sizes both for large files and large sets of small files.

7 Information about the Globus gsiftp is available on the World Wide Web at http://www.globus.org/security/v1.1/.

8

I

G R I D F T P : U N I V E R S A L D A T A T R A N S F E R F O R T H E G R I D

 7777

Parallel data transfer
On wide-area links, using multiple TCP streams (even between the same source and destination)
can improve aggregate bandwidth over using a single TCP stream. Also, partitioning data across
multiple servers will further improve performance. GridFTP will support parallel data transfer,
both from a single server and from multiple servers. We will additionally propose a protocol
mechanism for automatic negotiation of the level of parallelization in a data transfer, and may
provide a reference implementation.

Third-party control of data transfer
In order to manage large data sets (including replication), it is necessary to provide third-party
control of transfers between storage servers. GridFTP will provide this capability by adding
GSSAPI security to the existing third-party transfer capability defined in the FTP standard.

Partial file transfer
Many applications require transfer of only a portion of a file. Transferring the entire file could be
too expensive. GridFTP will support partial file transfer.

Security
Security is critical when transferring or managing files. GridFTP will implement anonymous and
GSSAPI authentication with optional integrity and/or privacy, as defined by the existing
GSSAPI-enabled FTP standard. Though we will not provide higher-level authorization systems
at this time, we will provide and demonstrate the necessary hooks for these systems.

Support for reliable data transfer
Reliable transfer is important for many applications that manage data. Fault recovery methods for
handling transient network failures, server outages, etc. are needed. The FTP standard includes
basic features for restarting failed transfer that are not widely implemented. We will provide these
features in our implementation.

Furthermore, users should not be required to code to a different API to get advanced reliability
services, and we do not wish to dictate specific fault recovery algorithms. (Examples of these
services would be automatic retry, rescheduling a transfer for a later time, and switching to an
alternate source based on the contents of a replica catalog.) A plug-in interface to the data transfer
service will allow applications to add customized reliability behavior while retaining a standard
data transfer API.

Implementation plan
The following sections explain our intended plan for accomplishing what is described in this
paper. The Globus team at Argonne National Laboratory and the University of Southern
California Information Sciences Institute will be working intensively on this during the remainder
of 2000.

Needless to say, we will be working closely with a variety of groups at other institutions engaged
in related work. These are noted in the sections below where applicable.

G R I D F T P : U N I V E R S A L D A T A T R A N S F E R F O R T H E G R I D

 8888

Documentation
This white paper serves as the first piece of documentation regarding this work. Its purpose is to
explain our goals and strategy to various Grid and application communities and to stimulate
discussion and feedback.

We also intend to develop and submit a draft specification to the IETF that outlines the specific
protocol extensions that we have selected from existing FTP RFCs and the new extensions that
we intend to add to this set of features in support of the Data Grid. We will use the IETF RFC
process to standardize our candidate Data Grid transfer protocol.

Production Libraries
Our strategy of providing infrastructure-level building blocks for the Data Grid calls for a series of
libraries that are of sufficiently high quality that they can be used in new and existing storage
systems and applications. These libraries will provide the basic client and server protocol support
for applications and storage systems that wish to participate in the Data Grid.

Specific libraries will include:

! GridFTP client and server libraries (client side will support both C and Java)

! The above libraries will support third-party transfers (for C and Java)

! A library to provide support for the “URL copy” function (for C and Java)

! A GridFTP driver for the Globus GASS client (for C and Java)

! At least one “reliable transfer” plug-in for the protocol client library (for C and Java)

! A library for basic LDAP manipulation of replica catalogs (for C and Java)

! A replica management library (C and Java)

Production Tools
We will provide a number of tools (executable programs) that provide low-level data grid
management features.

! A program that copies the contents of one URL to a new URL.

! A set of programs for manipulating replica catalogs.

! A GridFTP server that is fully compliant with our draft specification (see
“Documentation” above).

Patches for Third-Party Software
In order to encourage the use of our Data Grid transfer protocol, we will provide patches to the
existing NCFTP client and the WUFTPD server. (These FTP implementations are both
provided in source form with open source licenses.)

G R I D F T P : U N I V E R S A L D A T A T R A N S F E R F O R T H E G R I D

 9999

We will also work with IBM (the designers of the HPSS storage system) and the developers of the
parallel FTP service that HPSS uses to add any remaining features to their protocol
implementation, making HPSS the first fully-compliant storage system for the Data Grid.

Prototypes and Applications
In addition to designing the GridFTP protocol, pursuing the standards process, developing a
reference implementation and libraries that can be used by storage systems and applications, and
providing patches for existing FTP tools, we also intend to build a number of prototype storage
systems and applications that demonstrate the value of this common data transfer protocol.

! We will use the production libraries listed above to build several examples of custom
storage managers. We will also use the libraries to build one or two storage system clients
and use these to demonstrate interoperability.

! We will also use these clients and servers to conduct intensive performance testing
experiments, demonstrating the performance benefits of the transfer protocol.

Finally, we will deploy the transfer protocol and replica management technologies into several
user communities, including the Parallel Climate Model Data Intercomparison (PCMDI)
community, the Next Generation Internet (NGI) Light Source community, the Particle Physics
Data Grid community, and the Grid Portals community.

Our experiences with these application communities will validate the usefulness of our work in
enabling advanced scientific discovery.

